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Supersymmetry broken at the TeV scale is one of the main targets
of the LHC program.

The breaking is described by

L = LSupersymmetric Standard Model + Lsoft terms

The soft terms are relevant terms in the Lagrangian that explicitly

break supersymmetry but do not reintroduce quadratic divergences

They consist of:

Scalar masses m2|φ2|, Trilinear scalar A-terms Aαβγφ
αφβφγ

Gaugino masses Maλλ, Bilinear scalar B-terms Babφ
aφb.
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Models of supersymmetry breaking are primarily about computing
the soft terms.

There are two main options for supersymmetry breaking :

◮ Gauge mediation - supersymmetry breaking is generated
within global field theory, msoft ≫ m3/2.

◮ Gravity mediation - supersymmetry breaking arises from
Planck-suppressed operators, msoft . m3/2.

In gravity mediation, susy breaking comes from operators
generated at the string scale.

The structure of supersymmetric soft terms may be a direct insight
into the UV theory and it is interesting to study susy breaking
within string theory.
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The structure of supersymmetry breaking is determined by the
effective 4d supergravity theory for moduli (Φ) and matter (Cα).

W = Ŵ (Φ) + µ(Φ)CαCβ +
1

6
Yαβγ(Φ)CαCβC γ + . . . ,

K = K̂ (Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ +
[

ZCαCβ + h.c .
]

+ . . . ,

fa = fa(Φ).

V = eK̂ (K̂ i j̄DiŴDj̄
¯̂
W − 3|Ŵ |2).

Classical soft terms come from expanding the N = 1 supergravity
action in terms of the moduli and matter fields.

If these vanish loop level soft terms become important.
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This talk is about computing anomaly-mediated gaugino masses
directly in string theory.

’Anomaly-mediated’ will mean any mass term of generic 1-loop
order

Mλ,anomaly ∼
g2m3/2

16π2

Comparison:
Mλ,tree : O(m3/2)

Mλ,running : O(m3/2)
g2

16π2
ln

(

Λ2

µ2

)
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Gaugino Masses and Gauge Couplings

Supersymmetry relates gaugino masses and gauge couplings

∫

d4xd2θ f (Φ)WαW
α =

∫

d4x Re(f (Φ))FµνF
µν

+

∫

d4x Ff (Φ)λλ+ . . . .

Anomalous gaugino masses are closely related to gauge threshold
corrections.

Gauge threshold corrections (anomalous gauge couplings) have
been well studied in string theory.
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Anomalous Gauge Couplings

In supergravity, physical and holomorphic gauge couplings are
related by Kaplunovsky-Louis formula:

g−2
phys(Φ, Φ̄, µ) = Re(fa(Φ)) (Holomorphic coupling)

+ ba

16π2 ln
(

M2
P

µ2

)

(β-function running)

+T (G)
8π2 ln g−2

phys(Φ, Φ̄, µ) (NSVZ term)

+
(
∑

r nrTa(r)−T (G))

16π2 K̂ (Φ, Φ̄) (Kähler-Weyl anomaly)

−
∑

r
Ta(r)
8π2 ln det Z r (Φ, Φ̄, µ). (Konishi anomaly)

Relates measurable couplings and holomorphic couplings.

This expression is well studied within string theory via gauge
threshold corrections.
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Anomalous Gaugino Masses

m1/2 = −
g2

16π2

[

− (TG − TR )KiF
i −

2TR

dR

F i∂i (ln det Z) + 2TG F I∂I ln

(

1

g2
0

)]

(Kaplunovsky , Louis)(deAlwis)

m1/2 = −
g2
a

16π2
[3T (G) − T (R)] m3/2 + (. . .)

(Giudice, Luty ,Murayama,Rattazzi), (Randall , Sundrum)

m1/2 = −
g2

16π2

[

(3TG − TR)m3/2 − (TG − TR) KiF
i −

2TR

dR

F i∂i (ln det Z)

]

(Bagger ,Moroi ,Poppitz), (Gaillard,Nelson)

m1/2 = −
g2

16π2

[

(3TG − TR)m3/2 − (TG − TR) KiF
i −

2TR

dR

F i∂i (ln det Z)

+2TG F I∂I ln

(

1

g2
0

)]

.

Also see (Dine, Seiberg).
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m1/2 = −
g2

16π2

[

(3TG − TR)m3/2 − (TG − TR )KiF
i −

2TR

dR

F i∂i (ln det Z)

+2TG F I ∂I ln

(

1

g2
0

)]

.

Why study in string theory?

◮ Expression is ultraviolet sensitive (depends on K and Z )

◮ Expression is classically undetermined (not invariant under
K → K + h + h̄, W → ehW ).

◮ Not complete agreement about precise form of expression (in
particular m3/2 term)

◮ Previous stringy argument for no anomalous gaugino masses
(Antoniadis, Taylor)
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Why study in string theory?

In no-scale susy breaking models (occurs in e.g. LARGE volume
scenario)

K = −3 ln(T + T̄ ) +
QQ̄

T + T̄
,

W = W0,

there is a cancellation of anomaly-mediated terms

m1/2 = −
g2

16π2

[

(3TG − TR )m3/2 − (TG − TR )KiF
i −

2TR

dR

F i∂i (ln det Z)

]

= 0.

The existence of this cancellation is phenomenologically important
for the magnitude and structure of soft terms.
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Where to compute?

We want examples of calculable models with non-zero beta
functions.

◮ The simplest such examples are (fractional) D3 branes at
orbifold singularities.

◮ String can be exactly quantised and all calculations can be
performed explicitly.

◮ Orbifold singularities only involve annulus amplitudes further
simplifying the computations.

◮ Will focus on D-branes at C
3/Z4.

◮ Orbifold action is (z1, z2, z3) → (ωz1, ωz2, ω
2z3) with

ω = e2πi/4.
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◮ The quiver for C
3/Z4 is:

n n

nn

0 1

23

◮ Anomaly cancellation requires n0 = n2, n1 = n3.

◮ This sources a twisted tadpole in the N = 2 sector set by
n0 − n1.
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Can embed the model in a compact space:

x1 x2 x
3

y1
y

2
y

3

(M,N,M,N)

(N,M,N,M)

Kähler potential is given by

K = − ln(S + S̄) −
3

∑

I=1

ln

(

(TI + T̄I )(UI + ŪI ) −
1

6
(ΦI + Φ̄I )

2

)

.

KΦI Φ̄Ī
≡ ZI =

1

(TI + T̄I )(UI + ŪI )
.

Twisted tadpole cancellation requires extra brane stacks on other orbifold fixed points.

Caveat: Uncancelled D3 tadpole in N=4 sector, should not be relevant for questions

involving β-functions.
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x
3

y
3

(M,N,M,N)

(N,M,N,M)

An important quantity is the winding mode partition function:

Zwinding (t) = TrCP(Θ2)





∑

n,m

e−(n2R2
1+m2R2

2 )α′t −
∑

n,m

e−((n+ 1
2
)2R2

1+(m+ 1
2
)2R2

2 )α′t



 .

This satisfies

Z(t) → 0 + O(e−1/R2t) as t → 0 (tadpole cancellation)

Z(t) → ba as t → ∞ (IR beta function)
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Computations

Have computed the following amplitudes:

◮ 〈Aa
µA

a
ν〉, 〈λ

aλa〉 − gauge threshold corrections

◮ 〈ψiψjφk〉 − Yukawa threshold corrections

◮ 〈φiφjφkλaλa〉 − Tree-level brane-to-brane susy breaking

◮ 〈H3λaλa〉 − Anomalous gaugino masses from NS-NS fluxes

◮ 〈F3λaλa〉 − Anomalous gaugino masses from RR fluxes

In general, need to compute with off-shell momenta and go
on-shell only at the end of the computation (to account for finite 0

0

terms such as
ki ·kj

ki ·kj
).

This gives potential ambiguities for 3-point functions which can be
resolved by considering 4-point functions.
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Gauge Thresholds

A ∼

∫

dt

t
Tr(Θ2)Zwinding (t)

1

g2
(µ) =

1

g2
0

+
ba

16π2
ln

(

(RMs)
2

µ2

)

Same as previous results for these models (JC, Palti)- couplings run
from the winding scale MW = RMs .
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1-loop Yukawa Couplings

Basic vertex operators

Va

− 1
2

(u1, k1, z1) = tae−φ/2S±(z1)e
ik1·X (z1)e iq1·H(z1),

Vb

− 1
2

(u2, k2, z2) = tbe−φ/2S±(z2)e
ik2·X (z2)e iq2·H(z2),

Vc
−1(u3, k3, z3) = tce−φe ik3·X (z3)e iq3·H(z3).

Amplitude is

A =

∫

dt

t

∫

dz1dz2dz3

〈

V a
−1/2 (u1, k1, z1)V

b
1
2

(u2, k2, z2)V c
0 (ϕ, k3, z3)

〉

.
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1-loop Yukawa Couplings

There are two types of contribution:

3-pt
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Yukawas: Wavefunction Renormalisation

The amplitude has contributions from the IR (t = ∞) to the effective UV cutoff
(t ∼ 1

M2
W

).

A ∼

∫

∞

0

dt

t
TrL(t

atbtcθ2)TrR(θ2)
∏

i

(−2 sinπθi )Z(t),

◮ Logarithmic running associated to wavefunction renormalisation.

◮ Result comes only from N = 2 sector (θ2 sector) - as for gauge thresholds.

◮ Running starts from super-stringy scale MW = RMs - as for gauge thresholds.
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Yukawas : Vertex Renormalisation

Amplitude becomes

∫

dt

t3

∫

dz1dz2dz3 k2 · k3
ϑ1(z1 − z2 + θ1)η3

ϑ1(z1 − z2)ϑ1(θ1)
〈
∏

i

e ik·X (zi )〉

with k2 · k3 = 0 on-shell.

As t → ∞,

〈e ik·X 〉 ∼ e−α′ki .kj (zij−
z2
ij
t

)

This has a momentum pole as zij , t → ∞ (infinite IR limit) which cancels k2 · k3.

Contributions at finite t vanish (forbidden by non-renormalisation theorem), but there

is a 1-loop vertex correction from the IR t = ∞ regime of the loop integral.
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Yukawas : Vertex Renormalisation

The vertex renormalisation is a (physical) IR effect associated to the 1PI action.

This can be verified by considering a 4-point amplitude.

In field theory it requires massless fields and arises from a term of the form (West
1991)

∫

d4xd4θ
1

�
D2g(Φ) →

∫

d4xd2θ
1

�
D̄2D2g(Φ) →

∫

d4xd2θ
�

�
g(Φ)

→

∫

d4xd2θ g(Φ).
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Brane-to-Brane Susy Breaking

This is the correlator 〈Wλλ〉 where W is a field theory
superpotential living on branes.

It gives gaugino masses induced by susy breaking vevs for
φ1, φ2, φ3.

Although this is an annulus diagram this in fact gives supergravity
tree-level susy breaking (understand via closed string diagram).
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Brane-to-Brane Susy Breaking
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Flux-Induced Gaugino Masses

Tree-level flux induced gaugino masses studied on the disk by Billo, Ferro, Frau,

Fucito, Lerda, Morales

Now come to target computation:

What are we looking for and how to interpret it?
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Supergravity Expectations

m1/2,tree =
F I ∂I fa

2Re(fa)

m1/2,anomaly = −
g2

16π2

[

δAM (3TG − TR )m3/2 − (TG − TR )KiF
i −

2TR

dR

F i∂i (ln det Z)

+2TG F I∂I ln

(

1

g2
0

)]

.

Consider this formula for 3-form flux backgrounds in the case of NS-NS and RR flux.

W =

∫

G3 ∧ Ω

for G3 pure NS-NS or pure RR (G3 is (0, 3) ± (3, 0)).

Note that in worldsheet CFT

G3 = F3 − iSH3 → F3 −
i

gs
H3
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NS-NS flux

W = −iS

∫

H3 ∧ Ω

Tree mass Mλ,tree =
F S

2Re(S)
= m̄3/2,

Running couplings:
1

g2(µ)
=

1

g2
tree

(

1 +
g2ba

16π2
ln

(

M2
W

µ2

))

.

Running masses Mλ,running = m̄3/2

(

1 −

(

g2ba

16π2

)

ln

(

M2
W

µ2

))

.

Anomalous masses Mλ,anomaly =
g2ba

16π2
δAMm̄3/2 .
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R-R flux

W =

∫

F3 ∧ Ω

Tree mass Mλ,tree =
F S

2Re(S)
= −m̄3/2,

Running couplings:
1

g2(µ)
=

1

g2
tree

(

1 +
g2ba

16π2
ln

(

M2
W

µ2

))

.

Running masses Mλ,running = −m̄3/2

(

1 −

(

g2ba

16π2

)

ln

(

M2
W

µ2

))

.

Anomalous masses Mλ,anomaly =
g2ba

16π2
(δAM − 2)m̄3/2 .
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String computation of 〈H3λλ〉 or 〈F3λλ〉 can give both running
and anomalous mass terms.

Test formula by looking at ratio of anomalous mass and running
mass.

Mλ,running

Mλ,anomaly

=

{

− 1
δAM

ln
(

M2
W

µ2

)

NSNS

1
δAM−2 ln

(

M2
W

µ2

)

RR

Can check results independently via computations with NS-NS and
RR flux vertex operators.
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Want
∫

dt

t3

∫

dz1dz2d
2w〈V

−1/2
λ (z1)V

1/2
λ (z2)V

0,0
H3

(w)〉

Flux vertex operator in (−1,−1) picture is

V
(−1,−1)
B

= H123e
−φ(w)−φ̃(w̄)X

3
(w , w̄)

(

ψ1(w)ψ̃2(w̄) − ψ2(w)ψ̃1(w̄)
)

e ik·X (w,w̄).

Flux vertex operator in (0, 0) picture is

V
(0,0)
B

=
1

4
H123e

ik·X

[

−α′ψ3

(

ψ1

(

∂X̃ 2 −
iα′

2

(

k · ψ̃
)

ψ̃2

)

− ψ2

(

∂X̃ 1 −
iα′

2

(

k · ψ̃
)

ψ̃1

))

− α′ψ̃3

((

∂X
1
−

iα′

2
(k · ψ)ψ1

)

ψ̃2 −

(

∂X
2
−

iα′

2
(k · ψ)ψ2

)

ψ̃1

)

+ X
3
((

∂X
1
−

iα′

2
(k · ψ)ψ1

) (

∂X̃
2
−

iα′

2

(

k · ψ̃
)

ψ̃2

)

−

(

∂X
2
−

iα′

2
(k · ψ)ψ2

) (

∂X̃
1
−

iα′

2

(

k · ψ̃
)

ψ̃1

))]

.
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Two kinds of pole: can move flux vertex operators onto gaugini

Move flux vertex operator onto gaugino to generate a momentum
pole. There are two residual vertex operator integrals

∫

dt

t3

∫

dz1dz2d
2w →

∫

dt

t3

∫

dz1dz2 →

∫

dt

t
.

This gives a running mass

A ∼

∫

dt

t

−2k2 · k3 − k3 · k3

2k2 · k3 + k3 · k3
Z (t)
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Two kinds of pole: or move flux vertex operators onto boundary

A ∼

∫

dt

t3

∫

dz1dz2dIm(w)
k3 · k3

k3 · k3
〈∂nX

3̄(z2)
(

X 3(iw2) − X 3(1/2 + iw2)
)

〉.

〈∂nX
3̄(z2)

(

X 3(iw2) − X 3(1/2 + iw2)
)

〉 =
dZwinding

dt

=
∑

n,m

(n2+m2)R2e−(n2+m2)R2)α′t−
∑

n,m

((n+
1

2
)2+(m+

1

2
)2)R2)e−((n+ 1

2
)2+(m+ 1

2
)2)R2)α′t
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A ∼
k3 · k3

k3 · k3

∫

dt

t3

∫

dz1dz2dIm(w)
dZwinding

dt

∼

∫

∞

t=0

dZ

dt

= Z(∞) − Z(0) = Z(∞).

This is an anomalous mass term.

Note it arises from a sum purely over ultraviolet states (only non-zero winding number

contributes to the sum), is only well-defined for a tadpole-cancelling theory, but is

then determined entirely by the massless spectrum.
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Overall amplitude in low-momentum limit is

∫

dt

t

(

2k2 · k3 + k3 · k3

−2k2 · k3 − k3 · k3
Z (t) + t

k3 · k3

k3 · k3

d

dt
Z (t)

)

Poles and zeros cancel and there is a definite answer in the on-shell
limit ki · kj = 0, k2

i = 0.

Anomalous and mass terms are opposite sign and same magnitude
- precisely consistent with δAM = 1.
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RR Flux

Can do the same thing for RR flux. Vertex operator is

V
(−1/2,−1/2)
F = NF gse

−φ/2−φ̃/2FmnpΘ(z)CΓmnpΘ̃(z̃)e ik·X ,

Can compute

∫

dt

t3

∫

dz1dz2d
2w〈V

1/2
λ (z1)V

1/2
λ (z2)V

−1/2,−1/2
F (w , w̄)〉

∫

dt

t3

∫

dz1dz2d
2w〈V

1/2
λ (z1)V

−1/2
λ (z2)V

1/2,−1/2
F (w , w̄)〉

∫

dt

t3

∫

dz1dz2d
2w〈V

−1/2
λ (z1)V

−1/2
λ (z2)V

1/2,1/2
F (w , w̄)〉

and evaluate correlators in zero momentum limit.
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RR Flux

◮ With the RR flux, there are again both running and
anomalous contributions to gaugino masses.

◮ However there is an off-shell ambiguity in fixing the relative
sign and magnitude of these two terms.

This is associated to the use of a 3-point function to study
the amplitude.

◮ In principle this can be resolved by considering a 4-point
function, where there is no need to continue off-shell, but this
is calculationally prohibitive.
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Conclusions

◮ We have studied 1-loop flux-induced gaugino masses on the
worldsheet.

◮ Anomalous mass terms exist and take the form

Ma ∼
m3/2

16π2

∫

dt
d

dt
Z (t) =

m3/2

16π2
(Z (∞) − Z (0))

=
m3/2ba

16π2
.

These appear as an explicit sum over UV states, but the result
depends only on the massless spectrum.

◮ For NS-NS flux sign and magnitude of anomalous mass term
agrees with BMP formula.

◮ RR flux case would require a 4-point computation to resolve
off-shell ambiguities present in the 3-point function.
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